31 August 2018

Ngāi Tahu Property Limited
PO Box 13-0060
Christchurch
New Zealand

Attention: Dean Christie

Geotechnical and Foundation Report: Lot 17, Manakura Neighbourhood, Karamū Subdivision, Riccarton, Christchurch

1 Introduction
This report provides the geotechnical appraisal and foundation recommendations for Lot 17 (DP 518068), Manakura Neighbourhood, Karamū Subdivision, Riccarton, Christchurch.

We anticipate the building will comprise a residential dwelling that is designed and constructed within the scope of NZS 3604:2011. Buildings outside the scope of NZS 3604:2011 require specific engineering design.

This report is intended to be used as technical supporting documentation for foundation design and Building Consent application purposes.

2 Ground Model
Our knowledge of the ground model is based on information from a number of sources, including:

Subdivision investigation\(^1\) including shallow and deep testing. The subdivision report concluded “Based on our liquefaction assessment, we consider the site to behave similarly to MBIE Technical Category 1 (TC1)”. The surface geology is Springston Formation alluvium, comprising mixtures of silt, sand and gravel. Groundwater is at approximately 10m depth.

Subdivision earthworks engineering undertaken with Eliot Sinclair as designer and Engineer to Contract, and works constructed by Blakely Construction Limited. All controlled fill placed across the subdivision area was supervised by an Engineer from Eliot Sinclair & Partners, and has been certified to NZS4431 as reported in the Inspecting Engineer’s Report\(^2\). The existing topsoil layer and any unsuitable material was removed down to clean insitu alluvium, followed by placement of controlled fill and finished with topsoil.

Site specific testing - see details below.

3 Site Specific Testing

Following the completion of the earthworks, we undertook site specific geotechnical testing across all residential lots within the subdivision. Testing within Lot 17 comprised 1 shallow spade hole and 3 hydraulic penetrometers).

Table 1 presents the inferred ground profile in Lot 17. The site investigation factual records and test location plans are attached.

Table 1: Inferred ground profile in Lot 17.

<table>
<thead>
<tr>
<th>Depth (Below Ground Level)</th>
<th>Soil Description</th>
<th>Information Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>0m to 0.4m</td>
<td>Silty TOPSOIL FILL.</td>
<td>Spade hole following the earthworks.</td>
</tr>
<tr>
<td>0.4m to 0.45-0.6m</td>
<td>Controlled Fill: sandy SILT and/or silty SAND with minor to some gravel content.</td>
<td>Observations made during the earthworks.</td>
</tr>
<tr>
<td>0.4-0.6m to ~0.8m</td>
<td>Insitu silts and sands.</td>
<td>Refusal depths from penetrometers nearby.</td>
</tr>
<tr>
<td>~0.4-0.8m to >10m</td>
<td>Insitu sandy gravels.</td>
<td>Site wide subdivision testing.</td>
</tr>
</tbody>
</table>

4 Foundation Recommendations

The TC1 foundation design provisions of the MBIE residential guidelines apply to the site – refer to MBIE Section 5, Figure 5.1.

Typically, below the topsoil layer the penetrometer test results generally indicate a geotechnical ultimate bearing capacity >300 kPa. Standard foundations for dwellings within the scope of NZS 3604:2011 are suitable. Refer to MBIE Section 5.2 Overview of new foundations options.

For a more resilient design the TC2 raft foundations Options 2 – 4 are suitable for the site.

Foundations for dwellings outside the scope of NZS 3604:2011 require specific engineering design.

General foundation design and construction advice is as follows:

1 Foundations should be excavated through the topsoil layer and bear onto competent subgrade material.

2 All turf and topsoil shall be removed to at least 100mm bgl, along with any deeper areas of soft or organic rich topsoil, from beneath the lightly loaded floor slab area. The depth of the topsoil strip shall be confirmed at the time of inspection (as described in Section 5 below) to confirm a satisfactory surface is achieved. The subgrade will then need to be proof-rolled or compacted to achieve a firm uniform surface. The area can then be backfilled by placing and compacting AP40 sandy gravels in maximum 200mm thick loose layers to achieve a minimum dry density of 2150kg/m3 up to the underside of the floor slab.

3 Internal floor slab thickenings and any other pads that are supporting concentrations of weight from roof trusses or columns shall be supported on, or be replaced with, mass concrete filled pads of the same area that are excavated through the topsoil and bear onto competent subgrade material.

4 Reinforcing in floor slabs shall be a minimum of 2.27kg/m2 welded reinforcing mesh sheets and the reinforcing is to be Ductility Class E in accordance with NZS 4671.

1 Hydraulic penetrometer testing was undertaken by Canterbury Geotest Ltd.

4 Ministry of Business, Innovation & Employment “Guidance: Repairing and Rebuilding houses affected by the Canterbury earthquakes”
5 Inspection Requirements

A suitably competent and experienced inspector should validate that the ground conditions exposed in the foundation excavations are consistent with the findings of this report and the foundation design assumptions. Loose material should be removed from excavations. Foundations should bear onto competent subgrade material.

The inspection can be undertaken by Council personnel or a consultant’s engineering personnel.

Please contact us with 48 hours’ notice if you require Eliot Sinclair & Partners to undertake the inspection work. Following a satisfactory inspection, we will provide a ‘Producer Statement - Construction Review’ to validate the exposed ground conditions.

6 Disclaimer

Comments made in this report are based on reporting by others, our earthworks reporting, our soil investigations, and the Ministry of Business Innovation & Employment Guidelines.

Whilst every care was taken during our investigation and interpretation of subsurface conditions, there may well be subsoil strata and features that were not detected. Additionally, on-going seismicity in the general area may lead to deterioration or additional ground movement that could not have been anticipated at time of writing of this report.

The exposure of such conditions, or occurrence of additional strong seismicity, or any future update of MBIE’s guidelines or the NZBC, may require a review of our recommendations. Eliot Sinclair & Partners should be contacted to confirm the validity of this report should this occur.

This report has been prepared for the benefit of Ngāi Tahu Property Ltd (or purchasers of the site from Ngāi Tahu Property Ltd), and the Christchurch City Council. No liability is accepted by this company or any employee of this company with respect to the use of this report by any other party.

Yours sincerely
ELIOT SINCLAIR & PARTNERS LTD

Prepared By: Reviewed & Approved for Release By:

Jeffrey Fleming Nick Harwood
NZDipEng (Civil) BE(Hons) MSc DIC IntPE(NZ) CMEngNZ CPEng (1007273)
Geotechnical Engineering Technician Principal

Encl.

- Site Investigation Records – 1 page
SITE INVESTIGATION RECORD

Client: Ngāi Tahu Property Ltd
Site: Stage 1, Manakura Neighbourhood, Karamū Subdivision, Riccarton Park

SCALA PENETROMETER TEST RESULTS

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Number of Blows per 100mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

SOIL PROFILE

Test Location - Lot 17, A

- FILL: silty TOPSOIL, with some gravel; dark brown.
- SAND, with some gravel; light brown. Damp.
- EOH: 0.45m - Target depth. Little to no fill indicated from survey plans at P01, P02, P03 and A.

COMMENTS

Scala penetrometers undertaken by Canterbury Geotest Ltd using a Hydraulic penetrometer rig.

For test locations, refer to Eliot Sinclair & Partners drawing: "Geotechnical Test Locations and Controlled/Engineered Fill Thickness Contour Plan"; Project No. 419748; Set No. G7; Sht No. 1 or 2; Rev. A.